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Abstract: Very recently in [1] Alday and Maldacena gave a string theory prescription

for computing (all) planar amplitudes in N = 4 supersymmetric gauge theory at strong

coupling using the AdS/CFT correspondence. These amplitudes are determined by a

classical string solution and contain a universal exponential factor involving the action of

the classical string. On the gauge theory side, expressions for perturbative amplitudes at

strong coupling were previously proposed only for specific helicities of external particles —

the maximally helicity violating or MHV amplitudes. These follow from the exponential

ansatz of Bern, Dixon and Smirnov [2] for MHV amplitudes in N = 4 SYM. In this paper we

examine the amplitudes dependence on helicities and particle-types of external states. We

consider the prefactor of string amplitudes and give arguments suggesting that the prefactor

at strong coupling should be the same as the Yang-Mills tree-level amplitude for the same

process. This implies that scattering amplitudes in N = 4 SYM simplify dramatically in

the strong coupling limit. It follows from our proposal that in this limit all (MHV and

non-MHV) n-point amplitudes are given by the (known) tree-level Yang-Mills result times

the helicity-independent (and particle-type-independent) universal exponential.
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In ref. [1] Alday and Maldacena uncovered how the AdS/CFT string — gauge theory

duality can be used to determine all n-point scattering amplitudes in N = 4 supersymmet-

ric gauge theory at strong coupling.

Until now it was unclear if the AdS/CFT correspondence can address scattering am-

plitudes in gauge theory directly. These amplitudes should correspond to scattering of

open strings with ends living on N D3 branes. However in the Maldacena α′ → 0 decou-

pling limit [3] the D3 branes essentially disappear giving rise to the AdS5 × S5 geometry

which serves as the target space for type IIB theory of (closed) strings. The well-known

holographic relation [4, 5] relates Green functions of chiral primary composite operators in

SYM to interactions of type IIB supergravity states in AdS5 × S5, but does not address

the on-shell scattering amplitudes in SYM.

In the Alday-Maldacena approach [1], as will be reviewed below, the open strings which

correspond to gluons (and their superpartners) end on the infrared D3 brane. This infrared

brane is placed in the AdS5 space at a large fixed value ZIR of the radial coordinate,

and extends along the four worldvolume directions Xµ. The infrared brane plays the

role of the infrared cutoff in gauge theory. Scattering amplitudes of massless on-shell

states are infrared divergent in gauge theory and cannot be defined without an infrared

cutoff. Infrared-regularised amplitudes in gauge theory are used at intermediate stages to

calculate infrared-safe physical observables, such as jet cross sections, etc. In [1] scattering

amplitudes of open strings in AdS5 ×S5 which end on the infrared D3 brane are identified

with the IR-regularised amplitudes in the N = 4 SYM. Taking ZIR → ∞ removes the IR

cutoff and renders these amplitude IR divergent.

At the leading order in strong coupling, λ → ∞, scattering amplitudes An are domi-

nated by a single classical string configuration whose boundary conditions are determined

by the external momenta p1, . . . , pn as explained in [1]. The colour-ordered planar scatter-

ing amplitudes of n gluons with momenta pi and helicities hi = ± at strong coupling are

of the form [1],

An(p1, h1, . . . , pn, hn) = K ei
√

λScl = K e−
√

λ
2π

Areacl , (1)

where Scl is the worldsheet action evaluated on the classical solution. It is given by the area

of the minimal surface Area(p1, . . . , pn)cl in AdS5 that ends on the boundary of the string

worldsheet, with the prescribed boundary conditions determined by the external momenta

pi. The exponent in (1) is universal: every n-point amplitude (for fixed n) contains the same

function e−
√

λ
2π

Areacl of the n external momenta. The prefactor K in (1) is non-universal:

it depends on the helicities (and particle types) of the external states in An as well as on

the kinematics. Thus, K distinguishes between specific n-point amplitudes, and has to be

determined for each amplitude in order to, for example, calculate cross sections. In the

λ → ∞ limit the entire λ dependence of the amplitudes is contained in e−
√

λ
2π

Areacl while

the prefactor K is λ-independent.

The authors of [1] have concentrated on the universal exponent in (1). They have

computed it explicitly for 4-point amplitudes, and also have studied its infrared properties

for general n-point amplitudes. The Areacl is infinite when ZIR → ∞ in agreement with

the fact that the amplitudes are IR divergent. When the IR regulator is present, it was
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shown in [1] (both using the explicit cutoff and the dimensional reduction schemes) that the

infrared properties of e−
√

λ
2π

Areacl are in precise agreement with the expected IR behaviour

of resummed perturbative amplitudes in gauge theory [6 – 8, 2].

For 4-point amplitudes the classical string action in the exponent of (1) was computed

explicitly in [1] using dimensional reduction to D = 4− 2ǫ dimensions to order 1
ǫ2

+ 1
ǫ + ǫ0.

Agreement was found with the strong coupling limit of the previously known gauge theory

result for A4 due to Bern, Dixon and Smirnov (BDS) [2]. This fact, together with the

matching of the IR behaviour for all n-point amplitudes provides a non-trivial test of

the AdS/CFT result (1) and, perhaps more importantly, explains from the string theory

perspective the exponentiated form of SYM amplitudes. In perturbative gauge theory this

exponentiation is a consequence of the up to now mysterious iterative structure of MHV

loop amplitudes [9, 2, 10 – 13] in planar perturbative N = 4 SYM.

The purpose of this letter is to determine the prefactor K of the n-point amplitudes

in (1). As already mentioned, K is the factor which distinguishes the amplitudes with

different helicities (and particle states) and is required for any cross section-type calculation.

We will argue that for all n-point amplitudes K is given by the corresponding tree-level

results, K ∝ Atree
n which are either known or can be easily computed using the tree-level

MHV rules [14 – 16] in perturbative N = 4 SYM. More precisely, K = Atree
n e−S0 , where

S0 does not depend on λ and is also independent of the helicities of external particles. In

string theory S0 arises from the subleading corrections to
√

λScl in the effective action.

If the BDS conjecture holds for all n-point MHV amplitudes in gauge theory, S0 can be

easily determined by comparing to those. In any case, if our approach is valid, it represents

arbitrary (MHV or non-MHV) gauge theory n-point planar amplitude at strong coupling

in the factorised form

An = A tree
n ei

√
λScl−S0 , (2)

where only the first factor on the r.h.s. depends on helicities of external states. This form

of the answer is in agreement with what was known (or conjectured) previously for MHV

amplitudes in N = 4 SYM [2]

A MHV
n = A tree MHV

n eFBDS
n (λ;pi), (3)

Equation (3) is the exponential ansatz of Bern, Dixon and Smirnov, conjectured to hold

to all orders at weak coupling and continued to the strong coupling regime. The fact that

MHV loop amplitudes are proportional to the tree-level MHV amplitudes is a consequence

of N = 4 supersymmetry (see e.g. appendix E of ref. [17] and can be understood from the

fact that A tree MHV
n is given by a single term, see eq. (21) below, which is uniquely fixed

by the kinematic limits and symmetries of N = 4 SYM. It is known, however, that this

factorisation does not hold order by order in λ for non-MHV amplitudes, and (3) is not

valid beyond the MHV case at fixed values of λ. However our result (2) implies that such

factorisation does hold in the strong coupling limit λ → ∞.

Our main goal is to find how string amplitudes depend on the helicities and types of

external states. These states — gluons and their N = 4 superpartners — are massless

excitations of the open string. To proceed we first need to locate the worldsheet boundary
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Figure 1: Scattering of four open strings ending on N coincident D3-branes. A, B, C, D are the

Chan-Paton indices labelling the branes on which strings end. For future reference we choose

external states described by open strings with one end on the N th brane, B = D = N (shown in

blue), and the other end on the remaining N − 1 branes, A, C = 1, . . .N − 1 (shown in red).

of the open string and discuss where the vertex operators describing the external states

should be placed.

The standard AdS5×S5 string theory description of conformal N = 4 SYM arises from

considering a stack of N coincident D3-branes in flat ten-dimensional IIB string theory and

subsequently taking the large-N near horizon limit [3]. Gluon scattering in gauge theory

corresponds to a scattering of open strings with ends on the D3-branes from the stack,

as shown in figure 1. External states are descried by the vertex operators V (p)T (a)A
B ,

where T (a)A
B are the usual SU(N) generators which keep track of the Chan-Paton factors

A,B = 1, . . . , N .

We will be following the philosophy of [1] where one D3-brane is separated from the

stack of N − 1 branes and placed at Z = ZIR. This gives the Coulomb branch in gauge

theory such that the states transforming in the bifundamental1 of SU(N − 1) × U(1) be-

come massive and all the remaining states of SU(N) remain massless. This procedure

implements an IR regularisation for the amplitudes where all the external states are in

the bifundamental of SU(N − 1) × U(1). In practical computations this prescription was

actually not used in [1] (they instead adopted a version of dimensional reduction), but for

our task of keeping track of the external states, we have to employ the more geometrical

prescription in terms of the separated infrared probe brane.

In figure 2 we show what happens to the amplitude in figure 1 when the IR brane is

separated from the N − 1 stack. The external states are those of the stretched strings. We

now take the Maldacena near-horizon limit of the N − 1 stack of D3-branes. The N − 1

branes dissolve and generate the AdS5 ×S5 geometry with N − 1 units of flux through the

S5 as in the usual case, but the IR brane at ZIR remains and can be viewed as a probe

1That is strings stretched between the N − 1 stack and the single brane at ZIR.
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Figure 2: Scattering of open strings stretched between the separated IR brane and the stack of

N − 1 D3-branes.

brane. Strings with both ends on the IR brane remain open strings, strings with both ends

on the N − 1 stack become IIB closed strings in AdS5 ×S5. Our external states are strings

which were stretched between the IR brane and the N − 1 branes in figure 2. These are

replaced by the open-closed string interactions. At tree level in the string coupling gst these

interactions are reflected by bending of the open string worldsheet in the classical AdS5

background. Thus, the string worldsheet of open strings previously stretched between the

IR brane and the N−1 branes in figure 2 is now bending into the bulk of the AdS5 as shown

in figure 3. The vertex operators describing external states are located on the Dirichlet IR

brane, which is the only brane remaining.

Normally one expects that the external states, being the states of the boundary con-

formal SYM theory, should live on on the boundary of the Anti de-Sitter AdS5 space, and

this is where the boundary of the open string worldsheet must be. In terms of Poincaré

coordinates (Xµ, Z) the AdS5 boundary is spanned by coordinates Xµ and is placed at the

radial coordinate Z → 0. However, our earlier discussion shows that the open string world-

sheet in the Alday-Maldacena approach ends on the IR brane at large values of Z = ZIR

rather than at Z → 0. As explained in [1], possible confusion is avoided when one recalls

that the Z = ZIR → ∞ surface also touches the boundary of AdS5 at values of Xµ → ∞.

Thus the boundary of AdS5 is not only described by Z → 0, but also by Z = ZIR at large

values of Xµ.

The reason why the correct description of gluon scattering is achieved in terms of open

strings ending at Z = ZIR and not at Z → 0 is most easily understood by comparing two

problems: one of gluon scattering in SU(N) gauge theory, and the other of calculation

of Wilson loops made by infinitely heavy quarks in the fundamental representation of the

SU(N − 1) SYM. Both problems are addressed by considering the worldvolume actions of

the string stretched between a single D3 brane put at a fixed value of Z and the remaining

N − 1 D3 branes of the SU(N) gauge theory. The mass of the stretched string goes to
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Figure 3: In the Maldacena near-horizon limit the N − 1 stack dissolves into the AdS5 × S5

geometry and the IR brane is the only brane remaining. The stretched strings worldsheet in figure

2 becomes the open string worldsheet curved into the AdS bulk. We show a slice of this worldsheet

at finite values of Xµ. In the asymptotic region Xµ → ∞ the red dotted lines approach the IR

brane so that all the asymptotic scattering states are located on the IR brane.

infinity when Z → 0 (giving an infinitely heavy fundamental quark state of SU(N − 1))

and this set-up corresponds to the Wilson loop calculation of [20]. The alternative scenario

where the single brane is at Z = ZIR gives masses of stretched strings of order m = 1/ZIR

which correspond to light gluons (becoming massless when the IR regulator is removed,

1/ZIR → 0).

Thus we have established that the asymptotic external states live on the boundary of

AdS5, which (up to a constant rescaling by ZIR) is the 4-dimensional Minkowski space.2

There we can use the standard flat space definition of vertex operators V . For a gluon

state of momentum pi and helicity hi = ± we use

V (pi) =

∫

dτ eipµ
i
Xµ(τ)ε±µ (pi)(∂τXµ(τ) + · · · ), (4)

where τ parameterises the boundary of the worldsheet (τ, σ), the polarisation vector of the

gluon is ε±µ (pi) and Xµ = Xµ(τ, σ = 0) is taken at the boundary (with the radial coordinate

Z = ZIR). The ellipses on the right hand side indicate the supersymmetric completion of

the vertex operator. These terms will not modify our conclusion for the prefactor.3

2Recall that the Dirichlet IR brane which defines the string worldsheet boundary, approaches the bound-

ary of AdS5 at asymptoticly large X. Since the IR brane is placed at ZIR, the relevant to us component of

the AdS5 boundary is also at ZIR. Hence the vertex operators (4) below will also be at ZIR.
3It will turn out that the prefactor is determined in our approach by a corresponding tree-level open

string amplitude in the α′
→ 0 limit and in the flat background. In this limit the amplitude is the same

whether it is calculated in the non-supersymmetric open string theory, or in the fully supersymmetrised

version reflecting the fact that gauge theory tree-level amplitudes are not sensitive to superpartners. (For

fixed external states, superpartners can propagate only in loops and are decoupled at tree level.)
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As mentioned earlier, the vertex operators (4) must be accompanied by the Chan-Paton

factors of the external states of the form T (a)A
B where the choice of our external states re-

quires that one of the labels A,B corresponds to the IR brane, and the other runs from 1

to N − 1. The full Chan-Paton factors of the amplitudes in figures 1, 2 remain unchanged

after the Maldacena limit is taken and are inherited by the amplitudes in figure 3 even

though the N − 1 stack has disappeared. The amplitudes can now be represented in the

colour-ordered form and we can concentrate on the purely kinematic partial amplitudes,

ignoring the colour SU(N) structure. Full amplitudes are obtained from the kinematic

partial amplitudes in the standard way (see e.g. [21, 22]) by multiplying them with known

colour structures (traces of products of T (a)’s) and summing over inequivalent permuta-

tions. The general philosophy up to now was set up to address scattering amplitudes with

very specific external states – those transforming in the bifundamental of SU(N −1)×U(1)

— which is a subset of the full set of states in the adjoint representation of SU(N). Then

from the kinematic partial amplitudes arising in this approach one can assemble the full

SU(N) amplitude for general SU(N) external states by simply assuming the full SU(N)

gauge invariance. Moreover, we also expect that the original set-up itself can be extended

to address more general non-Abelian amplitudes. To this end one would have to pull out a

few (but still a fixed number) of distinct IR branes before taking the large-N near horizon

limit. The choice of external states dictates which IR branes should be selected for each

process. We will not pursue this any further at present.

The n-point open string partial amplitude is represented by the Polyakov’s functional

integral

An =

∫

DX V (p1) . . . V (pn) ei
√

λS[X], (5)

where
√

λS[X] is the worldsheet action of the sigma model with the AdS5 × S5 target

space.

The amplitude (5) can be recast into the form

An =
∏

i

∫

dτiǫ
±
µ (pi)

δ

δJµ (τi)
eiW [J ], (6)

with

eiW [J ] =

∫

DXDZ exp

{

i
√

λS [X,Z] +
∑

i

ipµ
i Xµ (τi) +

∫

dτJµ (τ) ∂τXµ

}

. (7)

As in [1], the S5 sphere does not play an important role for amplitudes of gluons, and the

string solution is described by the (Xµ, Z) fields of AdS5 where µ = 0, . . . , 3 and Z is the

radial coordinate. The bosonic action on the AdS5 is

S [X,Z] =

∫

dτdσ

(

∂αXµ 1

Z2
∂αXµ + ∂αZ

1

Z2
∂αZ

)

(8)

Now, in general performing the integrals in (7) would be a difficult problem, because

one would require an infrared-regulated solution with a full dependence on the emission
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Figure 4: Four point scattering in the T-dual picture (with sides rescaled from
√

s/4 to unity.

points τi. However, we will argue that such a solution can be obtained by patching a τi-

independent IR-regulated solution of [1] in the bulk to a new τi-dependent solution which

we will construct near the boundary.

We start by revisiting the classical string solution of [1]. This is an extremum of the

exponent in (7) without sources, i.e. at J = 0. It is best described in terms of fields (yµ, r)

dual to (Xµ, Z) which are defined via [1]

∂αyµ = i
1

Z2
ǫαβ∂βXµ , r =

1

Z
(9)

The boundary conditions that the original coordinate Xµ carries a momentum pµ
i give the

conditions that yµ jumps by an amount proportional to the momentum pµ
i at the emission

points. The simplest solution describing the 4-point amplitude in the special case of s = t

has the boundary conditions for yµ depicted by four light-like segments in figure 4 (a), and

r = rIR ≡ 1/ZIR. Projection on the (y1, y2) plane gives the square with the sides of length

k =
√

s/2 which by rescaling can be set to 2, as shown in figure 4 (b).

Ideally for our full action, one would like to instead evaluate it in the conformal gauge

retaining full dependence on τi. One would place each of the four vertex operators V (τi)

on each side of the square.4 More precisely,

yµ(τ, σ = 0) =
∑

i

θ(τ − τi)
pµ

i√
λ
≡

∑

i

θ(τ − τi)k
µ
i (10)

where θ is the step function and we have defined the rescaled momenta kµ
i . However the

answer would be dominated by the classical action of [1] which is independent of the τi.

Now consider the procedure for IR regulation. The solution of [1]

y0(y1, y2) = y1y2 , r(y1, y2) =
√

(1 − y2
1)(1 − y2

2) (11)

does not have an explicit infrared cutoff; instead of boundary conditions

r(±1, y2) = r(y1,±1) = rIR, (12)

y0(±1, y2) = ±y2 , y0(y1,±1) = ±y2

4For example at the insertion point τ1 we have y1 = +1 and y2 changes from −1 to +1, dictated by

∆y2(τ1) = ~k1 = 2.
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Figure 5: (y1, y2)-projection of the solution for four-point scattering showing the square boundary,

and the smoothed boundary. The shaded inner region (in grey) shows the IR regulated “bulk”

contribution. The dotted outer region is where the patched solution is constructed with r ≃ rIR.

the solution (11) satisfies the boundary conditions with rIR = 0. In [1] the classical action

on the solution (11) (and on more general boosted solutions with s 6= t) was regulated by

dimensional reduction with the IR divergences manifesting themselves as 1/ε poles. Here

however it is more illuminating to introduce an IR cutoff into (11) by limiting the range

of integrations over y1 and y2 such that on the boundary of the integration region, the

function r is constant rIR 6= 0. This defines the boundary in the form

r2
IR = (1 − y2

1)(1 − y2
2) , 0 < rIR ≪ 1 (13)

which we plot in figure 5. In terms of the explicit IR cutoff rIR = 1/ZIR, the action on

the solution (11),(13) is equivalent to the double integral performed inside the boundary

curve (13) (the shaded region in figure 5.) In other words, by construction, the action

in the inner region corresponds to an IR-regulated Alday-Maldacena universal exponent,

albeit in the ZIR regularisation rather than the dimensional reduction scheme used in [1].

This regulation (13) clearly excises an important region from the integration, namely

the cusps of the square where IR divergencies occur. However, smoothing the cusps has not

only removed the IR divergencies, but has also removed from the τi integrations precisely

those regions in which the wavefunctions of the asymptotic states are completely separated

and indeed they are never fully resolved. In other words the smoothing of the square has

removed the kinematic poles of the τi integration. In order to restore them, we propose to

patch the solution inside the smooth region by matching it to another solution which has

r nearly equal to rIR = 1/ZIR > 0 and extends all the way to the square boundary. We

will see below that this patch is really needed only near the boundary (the dotted outer

region in figure 5) and can be constructed essentially in flat space.

To restate the argument, we claim that if one were able to determine a full solution

to the equations of motion in this background, the action would separate into a “bulk”

part described by (an IR-regulated) action of ref. [1], and a near-boundary contribution

which will be constructed shortly. This near-boundary contribution (in distinction with
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the AM action) carries dependence on the insertion points τi of the vertex operators and

is essential for determining the prefactor. This contribution is manifestly IR-safe (thus can

be calculated in a regularisation scheme of our choice) and due to its τi-dependence it is

clearly distinct from the AM action. Finally, this boundary action is not important for the

universal exponent of [1] (since it will turn out to be formally subleading in 1/
√

λ), but is

necessary to determine the prefactor.

As already mentioned, the Alday-Maldacena action does not depend on the emission

points τi and is a homogenous function of external momenta. Specifically its IR-finite part

depends only on the ratios of momenta and as such it does not matter whether we keep k

fixed or p fixed (k = p/
√

λ) when we eventually send λ to infinity. There are also boundary

contributions to the action coming solely from the edges of the square, or more generally

from the edges of n-sided polygons, for n-point amplitudes. Note that in the boundary

part of the action it will be important to keep the physical unrescaled momenta pµ
i fixed

when taking the strong coupling limit.

To calculate the contributions near the edges we look for the classical solution Xµ
cl near

the worldsheet boundary in the dotted region of figure 5. There, as explained earlier we

treat the Z-field as approximately constant Z = ZIR. We want to extremise

√
λS [X,Z] +

∑

i

pµ
i Xµ (τi) − i

∫

dτJµ (τ) ∂τXµ. (14)

For Xµ components, the action (8) is quadratic, and we can solve for Xµ(τ, σ):

2
√

λXµ
cl =

∑

i

G(τ − τi, σ)pµ
i + i

∫

dτ ′∂τG(τ − τ ′, σ)Jµ(τ ′) (15)

G(τ, σ) is the Green function of the Laplacian

∂

∂w

1

Z2

∂

∂w̄
G(τ, σ) = δ(2)(w), (16)

where w = τ + iσ and w̄ = τ − iσ. We can integrate (16) and find derivatives of G

∂

∂w̄
G(τ, σ) = Z2 1

w̄
,

∂

∂w
G(τ, σ) = Z2 1

w
. (17)

On the boundary, the value of Z is constant ZIR, and up to this constant rescaling, the

Green function G in (17) is the same as in flat space. The effective action (14) on our

configuration (15) is given by

− 1

2
√

λ

∑

ij

pµ
i G(τi − τj, σ = 0) pµ j

− i

2
√

λ

∫

dτJµ (τ)
∑

i

∂τG (τ − τi, σ = 0) pµ
i (18)

+
1

4
√

λ

∫

dτdτ ′Jµ (τ) ∂2
τ G

(

τ − τ ′, σ = 0
)

Jµ
(

τ ′) .
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The above expression is evaluated at σ = 0. It is the boundary contribution to the action

we are after. We denote it 1√
λ
Sboundary

cl (τi, pi). The total action reads

√
λSbulk

cl (pi) +
1√
λ

Sboundary
cl (τi, pi). (19)

The expression for 1√
λ
Sboundary

cl (τi, pi) on the right hand side of (18) is precisely the expo-

nent of the generating functional for the tree-level amplitudes in flat space (we recall that

Z = ZIR =const and the Green function is the usual log(τi − τj)). We now take the limit

of
√

λ → ∞ keeping the physical momenta pµ
i and the IR-cutoff ZIR fixed. In this limit we

pick up the poles contribution of the tree-level Veneziano amplitude in flat space, which is

precisely the tree-level Yang-Mills amplitude we are after. Note that the contribution to

the amplitude coming from our patch 1√
λ
Sboundary

cl (τi, pi) is actually independent of ZIR.

This can be seen by recalling that G = Z2
IRGflat and these two powers of ZIR can be re-

moved by rescaling p → ZIRp and J → ZIRJ . Since the amplitude An goes as p−n, the

ZIR-dependence disappears from An. Thus we see that the prefactor is IR-safe as it should

be for the tree-level amplitude. A posteriori, this justifies our use of the IR regularisation

scheme by a cut-off ZIR for the calculation of the prefactor.

We conclude that the prefactor K in (1) is proportional to the tree-level Yang-Mills

amplitude. It is important to note that the nature of our strong coupling limit is different

from the one taken in [23]. The authors of [23] were taking the combination α′pipj → ∞
which corresponded to their case of interest, namely of taking the very high energy limit of

the string amplitude in flat space. In our case this procedure would give us the exponential

tail of the Veneziano string amplitude, rather than its pole part. The correct way to take

the limit in the AdS/CFT correspondence case at hand, is to fix physical momenta and to

send
√

λ → ∞ (or α′pipj → 0 in the language of [23]).

It is instructive at this point to compare our patched solution approach in AdS5 to a

calculation performed entirely in flat space.5 In the latter case, there is no radial coordinate

(Z or r), the action is free and our “near-boundary” solution (15) is valid everywhere in

the worldsheet (with
√

λ replaced by 1/α′ and G being the flat space Green function,

log(τi − τj)). Thus in flat space we don’t need the “bulk” solution and the full classical

action is given by (18) i.e. by the second term in (19). The fact that the “bulk” action

vanishes in flat space can be seen explicitly. We have found the configuration y0(y1, y2)

which minimises the Nambu-Goto action, giving SNG = 0, and satisfies the appropriate

boundary conditions. Hence, in flat space the area (or bulk) contribution to the action is

trivial, and the full answer is given by (18). This shows an important difference between

the classical string actions in the flat case of [23] and the AdS case of [1]. In our language,

the Alday-Maldacena AdS action is the bulk action while the flat-space action is purely of

the boundary type. In the case considered in [23] the remaining integrations over emission

points τi were performed in the saddle-point approximation relevant to their case of interest,

5We are of course not implying that the flat space calculation describes the AdS case. As discussed in

detail by Polchinski and Strassler [24], the flat space approximation of the AdS is justified only at high

energies, when the scattering event takes place in a small region of space. Moreover, even then, the result

of the flat space calculation is folded against AdS wave functions.
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α′pipj → ∞. As mentioned earlier we work in the opposite limit, α′pipj → 0, where the τi

integrations are dominated by regions τi → τj. This gives the poles part of the Veneziano

amplitude which is precisely the tree-level Yang-Mills amplitude.6 In the AdS case the

bulk action in non-vanishing (and provides for an overall universal exponent), while the

tree-level amplitude gives the prefactor of the full amplitude. Since this prefactor arises

from the “pinched regions” where τi ≃ τi+1, the flat space calculation is justified. In other

words, in this limit the Green function G(τi − τj, σ = 0) does not enter the AdS5 bulk and

stays on the Minkowski-space boundary.

We now briefly comment on the effect of Gaussian fluctuations around the saddle point.

A systematic approach to integrate out semiclassical fluctuations of strings in AdS5 × S5

based on the Green-Schwarz formalism [25] was developed in refs. [26, 27]. The bosonic

part of the action contains terms quadratic in

(

δa
b ∂α + ωM

a
b∂αXM

cl

)

ζb, (20)

and other similar terms, as explained in [26, 27]. Here ζa denotes quantum fluctuations

around the saddle point solution XM
cl = (Xµ

cl, Z
µ
cl). We note that J and τi can enter this

action only via Xµ
cl (i.e. only in the second term in (20)). Since X

µ ∼ λ−1/2J , as dictated

by (15), these J- and τi-dependent terms can be neglected in (20). This line of argument

assumes the validity of our patching approach and that the scaling of the J-dependent part

of X
µ

is essentially determined by the flat space patch. In this case the overall external-

state-dependent structure of the prefactor at leading order in λ → ∞, is not affected by

the fluctuations. One would need to carry out these integrations, however, if one wanted to

derive S0 in string theory. Here we should note that it is not clear if the Alday-Maldacena

set-up (at least in dimensional regularisation) admits a consistent 1/
√

λ expansion, as was

recently pointed out in ref. [28].

To summarise, we have argued that the prefactor K of the Alday-Maldacena string

amplitude (1) takes essentially the same form as in flat space. Since we are ignoring cubic

and higher powers of fluctuations, and the string worldsheet is a disc, this results in K

being proportional to the tree-level planar amplitude and (2) follows.

As already mentioned, in gauge theory scattering processes at strong coupling were

previously discussed only for the MHV amplitudes, i.e. those with 2 negative and n − 2

positive helicities. These results follow from the exponentiated ansatz (3) of Bern, Dixon

and Smirnov [2], which was based on a 3-loop calculation of 4-point amplitudes, and was

conjectured in [2] to hold to all-orders in weakly coupled perturbation theory for n-point

MHV amplitudes. The prefactor in (3) is the tree-level Parke-Taylor MHV amplitude [18,

19] which for n-gluons takes the form

A tree
n MHV = g−2

YM

〈prps〉4
〈p1p2〉〈p2p3〉 . . . 〈pnp1〉

(2π)4δ(4)(
∑

i

pi) (21)

6Of course integrations over τi can be carried out exactly giving the full Veneziano string amplitude.

Then the α′pipj → 0 limit is the Yang-Mills amplitude.
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This amplitude is written in the helicity spinor formalism. Similar expressions hold for all

tree-level MHV amplitudes involving gluons, fermions and scalars of N = 4 SYM. They

can be found in e.g. section 5 of ref. [15].

FBDS
n (λ; pi) in (3) are functions of kinematical invariants of n external momenta and

are computed perturbatively by Taylor expanding in powers of (small) λ. The important

point is that the entire kinematic dependence in FBDS
n (λ; pi) is determined from a 1-loop

calculation (i.e. at order λ1 in weakly coupled SYM perturbation theory). More precisely,

we first factor out of the amplitude the IR-divergent part,

FBDS
n (λ; pi) = F div

n

(

1

ε
;λ; pi

)

+ F fin
n (ε;λ; pi), (22)

where the IR-divergent part contains double and single poles in the ε parameter of the

dimensional reduction. F div
n is fixed by (and is in agreement with) the general theory of

IR divergences in amplitudes [6 – 8, 2, 1]. The IR-finite part, F fin
n (ε) is determined by the

BDS ansatz [2] for ε = 0

F fin
n (ε = 0;λ; pi) =

f(λ)

4
F (1)

n (pi) + C(λ). (23)

If the BDS conjecture is correct, eq. (23) implies that the kinematic dependence of the

amplitude appears only in F
(1)
n (pi) and is disentangled from the coupling λ dependence.

The functions F
(1)
n (pi) are determined at the 1-loop level and are given in eq. (4.55) of [2].

Functions f(λ) and C(λ) depend only on the coupling and are calculated perturbatively [2].

The function f(λ) is the soft (cusp) anomalous dimension and is also known in the strong

coupling regime [29, 30, 28], f(λ) →
√

λ
π − 3 log 2

π .

In order to have an explicit ansatz for all n-point amplitudes we can identify the

action of the classical string
√

λ
2π Areacl with the

√
λ terms in the λ → ∞ limit of the BDS

exponent for all n-point amplitudes. This identification in principle can (and should) be

checked explicitly for general n (and in particular for n ≥ 6) by computing appropriate

classical string actions and gauge theory amplitudes as well (to check the validity of the

BDS ansatz). If it does not hold, then even the MHV amplitudes cannot be matched in

string and in gauge theory. This would imply that either the BDS ansatz does not work,

or that the proposal of [1] of extending the AdS/CFT correspondence to address gauge

theory scattering amplitudes is incorrect or at least incomplete. If on the other hand the

identification does hold, we have a formula for all n-point planar amplitudes in strongly

coupled N = 4 SYM,

An = A tree
n eFBDS

n (λ→∞;pi). (24)

This would give the prefactor K (at ε = 0) for a general amplitude (1) in the form,

K = A tree
n e−

3 log 2
4π

F
(1)
n (pi) up to a numerical coefficient coming from eC(∞).

After the earlier version of this paper was published it was pointed out in refs. [32 – 34]

that there are reasons to suspect that the BDS conjecture in gauge theory may fail for

MHV amplitudes with n ≥ 6 external legs. The reason for this lies in the “dual space”

conformal symmetry which uniquely constrains the 4-point and 5-point amplitudes to take

the BDS form, but not the n ≥ 6 point amplitudes which a priori can differ from the
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BDS proposal by an arbitrary function of conformal ratios. Since the BDS proposal was

influenced by explicit calculations of only 4-point and 5-point amplitudes in [2, 10 – 13] it

may indeed fail or require modifications at the 6-point level. The main conclusions of this

paper are not affected by the validity of the specific BDS conjecture.

The statement that in the strong coupling limit all amplitudes of N = 4 SYM exhibit

an exponential form with a universal exponential factor in our view is the main conclusion

of the general approach initiated by Alday and Maldacena. The factorised form for these

amplitudes (2) is our main result. As mentioned earlier, for non-MHV amplitudes this

factorization cannot be seen in the weakly coupled perturbation theory. However, the

remarkable prediction from string theory is that it must hold in the strong coupling limit

λ → ∞ where Yang-Mills must simplify dramatically.
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